BLOG PENGETAHUAN

ORIGAMI PEMBATAS BUKU BENTUK HATI (LOVE) PART 1







Assalamu'alaikum wr. wb.

Hallo teman-teman semua....
Selamat datang di blog saya... :)
Pada artikel kali ini saya ingin berbagi informasi tentang tutorial membuat origami pembatas buku bentuk hati (love), langsung saja simak penjelasan di bawah ini ya dan ikuti langkah-langkahnya.... :)


BAHAN :
1 Buah kertas origami berbentuk persegi (ukuran yang saya gunakan 10 cm x 10 cm)

LANGKAH-LANGKAH:


1. Siapkan 1 lembar kertas origami


2. Lipat kertas secara diagonal sehingga membentuk segitiga.



3. Buka kembali lipatan kertas sehingga terlihat satu garis melintang.


3. Lipat secara diagonal membentuk sehingga segitiga pada sisi yang satunya.


4. Buka kembali lipatan kertas sehingga terlihat dua garis melintang.


5. Lipat kertas menjadi dua sama besar membentuk persegi panjang.


6. Buka kembali lipatan.


7. Lipat kertas menjadi dua sama besar membentuk persegi panjang pada sisi yang satunya.


8. Buka kembali lipatan.


9. Lipat kertas ke arah garis horisontal yang ada di tengah sehingga membentuk persegi panjang.


10. Buka kembali lipatan.


11. Buat lipatan dari atas ke bawah menjadi dua lipatan yang sama besar membentuk persegi panjang.


12. Buat lipatan bagian kanan dengan cara memasukkan kertas ke sela-sela kertas sehingga membentuk sisi miring.


13. Lakukan hal yang sama seperti langkah 12 pada sisi sebelah kiri sehingga membentuk segitiga.


 14. Putar kertas sebesar 180 derajat.


15. Bentuk lipatan seperti pada gambar di bagian kanan.


16. Bentuk juga lipatan seperti langkah 15 pada bagian kiri.


17. Kemudian lipatan yang telah dibuat tadi dilipat ke atas.


18. Lipat bagian sudut atas bagian kanan sehingga membentuk segitiga vertikal.


19. Lakukan hal yang sama seperti langkah 18 pada sudut atas bagian kiri.


20. Selanjutnya, bentuk lipatan kecil pada bagian atas sebelah kanan sehingga membentuk segitiga kecil.


21. Lakukan hal yang sama seperti langkah 20 pada bagian atas sebelah kiri.


22. Lipat segitiga kecil sebelah kanan ke arah bawah.


23. Lakukan hal yang sama seperti langkah 22 pada segitiga kecil sebelah kiri.



24. Kemudian buka lipatan kertas ke arah bawah.


25. Origami pembatas buku berbentuk hati (love) sudah jadi dan sudah siap untuk digunakan.


Nah, itu tadi langkah-langkah membuat origami pembatas buku bentuk hati (love). Semoga tulisan ini bermanfaat dan dapat membantu teman-teman dalam membuat origami pembatas buku bentuk hati (love). Kunjungi dan tonton juga video tutorial membuat origami pembatas buku bentuk hati (love) di channel youtube saya yang sudah saya cantumkan di blog ini.
Sekian artikel kali ini, apabila ada masukan/ saran dari teman-teman silahkan tinggalkan komentar di bawah.


Wassalamu'alaikum wr. wb.




MEMBUAT ORIGAMI BENTUK HATI (LOVE)




Assalamu'alaikum wr. wb.

Hallo teman-teman semua...
Selamat datang di blog saya... :)
Pada artikel kali ini saya ingin berbagi informasi tentang tutorial membuat origami bentuk hati (love), langsung saja simak penjelasan di bawah ini ya dan ikuti langkah-langkahnya... :)

BAHAN :
1 Buah Kertas Origami berbentuk persegi (ukuran yang saya gunakan 10 x 10 cm)

LANGKAH-LANGKAH:



1. Siapkan satu lembar kertas origami.


2. Lipat kertas origami secara diagonal sehingga membentuk segitiga.


3. Lipat lagi secara diagonal pada sisi yang lain.


 4. Buka kembali lipatan, sehingga membentuk dua garis diagonal yang saling berpotongan.


5. Lipat salah satu ujung kertas ke titik pusat garis diagonal.


6. Lipat ujung kertas bagian bawah ke atas sehingga ujung lipatan tepat pada garis lipatan sebelumnya.


7. Lipat sisi bagian kanan ke arah atas dengan mengikuti garis vertikal yang ada di tengah.


8. Lipat juga sisi bagian kiri ke arah atas dengan mengikuti garis vertikal yang ada di tengah.


9. Balik kertas yang sudah dibuat tadi.


10. Lipat ujung segitiga kecil ke arah bawah hingga ujung lipatan bertemu dengan garis lipatan dibawahnya. 


11. Lipat ujung kertas sebelah kanan dan kiri ke sisi dalam membentuk segitiga kecil.


12. Balik hasil lipatan, dan origami bentuk hati (love) telah selesai dibuat.


Nah, itu tadi langkah-langkah membuat origami bentuk hati (love). Semoga tulisan ini bermanfaat dan dapat membantu teman-teman dalam membuat origami bentuk hati (love). Kunjungi dan tonton juga video tutorial membuat origami bentuk hati (love) di channel youtube saya yang sudah saya cantumkan di blog ini.
Sekian artikel kali ini, apabila ada masukan/ saran dari teman-teman silahkan tinggalkan komentar di bawah.


Wassalamu'alaikum wr. wb.









CARA MEMBUAT BLOG UNTUK PEMULA



 
Suasana Pelatihan Membuat Blog di Rumah Kreatif Solo


Assalamu'alaikum wr. wb.
Hallo guyss....
Pada kesempatan kali ini saya ingin membagikan cerita kepada kalian, saat ini saya sedang berada di Rumah Kreatif BUMN Solo. Saya sedang mengikuti pelatihan membuat blog. Acara ini diadakan oleh komunitas guru belajar Soloraya (KGB Soloraya) dalam rangka temu pendidik daerah. Pembicara pada pelatihan kali ini adalah pembicara yang kece badai yaitu Sara Neyrhiza. Beliau adalah seorang dosen muda, content creator, dan blogger. Beliau aktif membuat konten YouTube, membuat podcase, dan menulis artikel di blog. Nah, pada artikel kali ini Saya ingin bercerita dan berbagi ilmu yang saya dapatkan pada pelatihan kali ini. Tulisan pada artikel ini adalah salah satu tugas dari pelatihan kali ini. Secara umum, Saya diajarkan tentang cara membuat blog, cara mengatur template, cara membuat tulisan yang menarik, cara mengatur tata letak blog yang menarik, dan yang tidak kalah menarik yaitu cara membuat konten blog yang menarik. Salah satu ilmu yang ingin saya bagikan pada artikel kali ini yaitu tentang cara membuat blog untuk pemula.

Artikel yang saya bagikan disini yaitu membuat blog menggunkan situs blogger.com, selain karena mudah digunakan untuk pemula, situs blogger.com ini juga dianggap aman karena berada dibawah naungan Google. Disini saya menyontohkan membuat blog melalui tampilan ponsel/ HP ya karena saya menulis artikel ini menggunakan ponsel/ HP. Jadi untuk kalian yang tidak memiliki perangkat seperti PC/ laptop, hal tersebut bukanlah suatu alasan, kalian tetap dapat menjadi seorang blogger dengan menggunakan ponsel android kalian. Oke, langsung saja ke langkah-langkahnya ya!
Langkah-langkah membuat blog:

1.  Kunjungi alamat/ situs www.blogger.com. Setelah itu akan muncul gambar seperti di bawah ini:


2. Pilih/ klik tulisan "BUAT BLOG".



3. Selanjutnya, pilih akun google/ gmail yang akan kalian jadikan akun untuk membuat blog. Kemudian masuk/ login dengan memasukkan alamat akun gmail dan password.

4. Setelah login, selanjutnya akan masuk ke halaman seperti di bawah ini. Kemudian isikan kolom display name/ nama tampilan dan klik continue to blogger/ lanjutkan ke blogger.

5. Selanjutnya, akan muncul halaman seperti di bawah ini. Klik kotak bertuliskan creat new blog/ buat blog baru.

6. Setelah itu, akan muncul tampilan seperti gambar di bawah ini. Isikan judul blog dan alamat blog. Judul blog ditulis sesuai tema blog yang akan kita buat dan alamat blog usahakan dibuat unik atau bisa juga menggunakan nama kalian seperti alamat blog pada artikel ini. Pastikan alamat blog yang kalian gunakan tersedia/ available.



Selanjutnya, pilih tema tampilan blog kalian. Ada beberapa pilihan tema, kalian bisa memilih salah satu yang dirasa bagus/ cocok menurut kalian. Jika semua langkah diatas sudah dilakukan dengan benar, selanjutnya klik creat blog/ buat blog dan blog kalian sudah berhasil dibuat serta sudah siap digunakan untuk menulis artikel.

Nah, itu tadi penjelasan tentang cara membuat blog untuk pemula melalui situs blogger.com. Semoga artikel ini bermanfaat ya.
Apabila terdapat masukan/ saran dapat ditinggalkan di kolom komentar ya..
Terimakasih telah mengunjungi blog saya.
Sekian,

Wassalamu'alaikum wr. wb




KONSEP DASAR OPERASI BILANGAN BULAT

OPERASI HITUNG BILANGAN BULAT


A. Pengertian Bilangan bulat
     Bilangan bulat adalah bilangan yang terdapat pada garis bilangan yang terdiri dari bilangan bulat negatif, bilangan 0 dan bilangan bulat positif.
 Bilangan bulat dapat ditulis : ...-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5...






     B. Sifat-sifat operasi bilangan bulat
1.      Sifat Penjumlahan Bilangan Bulat
Penjumlahan adalah operasi yang mengkaitkan pasangan elemen (a,b) dengan elemen c, dengan bentuk c = a + b.
a.      Sifat Tertutup
Operasi penjumlahan pada bilangan bulat selalu menghasilkan bilangan bulat, entah itu bilangan bulat negatif, bilangan 0, atau bilangan bulat positif.
·         5 + (-3) = 2
5 bilangan bulat, -3 bilangan bulat, 5 + (-3) = 2 juga bilangan bulat.
·         -7 + 3 = -4
-7 bilangan bulat, 3 bilangan bulat, -7 + 3 = -4 juga bilangan bulat.
b.      Sifat Komutatif
Jika a + b maka hasilnya akan sama dengan b + a.
1)      a + b = b + a
Contoh : 4 + 5 = 5 + 4 = 9
2)      (-a) + (-b) = (-b) + (-a)
Contoh : (-4) + (-5) = (-5) + (-4) = -9
3)      (-a) + b = b + (-a)
Contoh : (-4) + 5 = 5 + (-4) = 1
4)      a + (-b) = (-b) + a
Contoh: (-5) + 4 = 4 + (-5) = -1
c.       Sifat Asosiatif
Jika (a + b) + c = a + (b + c)
Contoh : (5 + 6) + 3 = 5 + (6 + 3) = 14
d.      Penjumlahan dengan bilangan nol
0 merupakan unsur identitas (elemen netral) pada penjumlahan. Untuk sembarang bilangan bulat a, berlaku:
a + 0 = 0 + a = a
Contoh : 10 + 0 = 0 + 10 = 10
e.       Penjumlahan bilangan bulat dan lawannya (invers) adalah nol
Jika a + (-a) = 0
Contoh : 5 + (-5) = 0

Soal Latihan !
1.      9 + 8 = ...
2.      (-15) + (-37) = ...
3.      17 + (-9) = ...
4.      (-35) + 21 = ...
5.      (8 + 17) + 5 = ...
6.      19 + (6 + 3) = ...
7.      0 + 52 = ...
8.      54 + 0 = ...
9.      (-27) + 27 = ...
10.  37 + (-37) = ...
2.      Sifat Pengurangan Bilangan Bulat
Pengurangan adalah operasi antara dua unsur yang merupakan kebalikan dari operasi penjumlahan; pengurangan b dari a disimbolkan dengan a – b = c.
a.      Sifat Tertutup
Operasi pengurangan pada bilangan bulat selalu menghasilkan bilangan bulat, entah itu bilangan bulat negatif, bilangan 0, atau bilangan bulat positif.
Contoh :
1)      7 – 12 = -5
7 bilangan bulat, 12 bilangan bulat, 7 – 12 = -5juga bilangan bulat.
2)      (-5) – 12 = -17
-5 bilangan bulat, 12 bilangan bulat, (-5) – 12 = -17juga bilangan bulat.
3)      (-8) – (-3) = (-8) + 3 = -5
-8 bilangan bulat, 3 bilangan bulat, (-8) + 3 = -5 juga bilangan bulat.
b.      Sifat Pengurangan Bilangan Nol
a – 0 = a          Contoh : 5 – 0 = 5
0 – a = -a         Contoh : 0 – 5 = -5
                        0 – 0 = 0

Rounded Rectangle: Catatan : Pada operasi pengurangan tidak berlaku sifat komutatif dan asosiatif.
a – b tidak sama dengan b – c  atau a-b≠ b - c
(a – b) – c tidak sama dengan a – ( b – c)  atau (a-b)-c≠a-(b-c)
                    Latihan Soal !
1)      8 – 25 = ...
2)      (-11) – 7 = ...
3)      (36) – (-17) = ...
4)      (-28) – (-15) = ...
5)      0 – 17 = ...
6)      20 – 0 = ...
7)      0 – (-4) = ...
8)      (-19) – 0 = ...
9)      (-13) – (-29) = ...
10)  (-54) – (-19) = ...

3.      Sifat Perkalian Bilangan Bulat
Perkalian adalah operasi yang menggabungkan dua besaran a dan b menjadi besaran c = a x b.
a
b
a x b
(+)
(+)
(+)
(+)
(-)
(-)
(-)
(+)
(-)
(-)
(-)
(+)

a.  Sifat Tertutup
Operasi perkalian pada bilangan bulat selalu menghasilkan bilangan bulat, entah itu bilangan bulat negatif, bilangan 0, atau bilangan bulat positif.
Contoh :
1)      2 x 4 = 8
2 bilangan bulat, 4 bilangan bulat, 2 x 4 = 8 juga bilangan bulat.
2)      -3 x 5 = -15
-3 bilangan bulat, 5 bilangan bulat, -3 x 5 = -15 juga bilangan bulat.
3)      (-8) x (-5) = 40
-8 bilangan bulat, -5 bilangan bulat, (-8) x (-5) =40 juga bilangan bulat.
b.      Sifat Komutatif
Jika a x b = b x a
Contoh : 5 x 4 = 4 x 5 = 20
c.       Sifat Asosiatif Perkalian
Jika (a x b) x c = a x (b x c)
Contoh : (4 x 5) x 6 = 4 x (5 x 6) = 120
d.      Sifat Distributif Perkalian
1)      Sifat Distributif Perkalian terhadap Penjumlahan
a x (b + c) = (a x b) + (a x c) (distributif kiri)
(a + b) x c = (a x c) + (b x c) (distributif kanan)
Contoh :
1)      10 x (11 + 4) = (10 x 11) + (10 x 4)
    = 110 + 40
    = 150
2)      (10 + 11) x 4 = (10 x 4) + (11 x 4)
    = 40 + 44
    = 84
2)      Sifat Distributif Perkalian terhadap Pengurangan
a x (b - c) = (a x b) - (a x c) (distributif kiri)
(a - b) x c = (a x c) - (b x c) (distributif kanan)
Contoh :
1)      10 x (11 - 4) = (10 x 11) - (10 x 4)
    = 110 - 40
    = 70
2)      (10 - 11) x 4 = (10 x 4) - (11 x 4)
    = 40 - 44
    = -4
e.       Sifat Bilangan Satu pada Perkalian
Jika a x 1 = 1 x a = a
Contoh : 8 x 1 = 1 x 8 = 8
f.       Sifat Bilangan Nol pada Perkalian
Jika 0 x a = a x 0 = 0
Contoh : 0 x 4 = 4 x 0 = 0

Latihan Soal !
1)      15 x 17 = ...
2)      -4 x 7 = ...
3)      34 x -3 = ...
4)      (-8) x (-6) = ...
5)      (17 x 2) x 4 = ...
6)      15 x (10 x 2) = ...
7)      4 x (8 - 5) = ...
8)      (14 + 12) x 3 = ...
9)      0 x 259 = ...
10)   576 x 1 = ...
4.      Sifat Pembagian Bilangan Bulat
Pembagian adalah operasi balikan dari perkalian ; hasil bagi atau a : b dari dua bilangan a dan b adalah c. Jika a, b bilangan bulat; b ¹ 0 dan b adalah pembagi dari a maka  a : b = c sama artinya dengan b × c = a.
a
b
a : b
(+)
(+)
(+)
(+)
(-)
(-)
(-)
(+)
(-)
(-)
(-)
(+)

Contoh :
Misalnya : a = 8, b = 2, c = 4
a : b = c sama artinya dengan b x c = a
8 : 2 = 4 sama artinya dengan 2 x 4 = 8
a.      Pembagian Bilangan Bulat Positif dengan Bilangan Bulat Positif
Jika bilangan bulat positif dibagi dengan bilangan bulat positif maka menghasilkan bilangan bulat positif.
      Contoh : 8 : 2 = 4        sebab 4 x 2 = 8
b.      Pembagian Bilangan Bulat Positif dengan Bilangan Bulat Negatif
Jika bilangan bulat positif dibagi dengan bilangan bulat positif maka menghasilkan bilangan bulat negatif.
Contoh : 8 : -4 = -2     sebab -2 x -4 = 8
c.       Pembagian Bilangan Bulat Negatif dengan Bilangan Bulat Positif
Jika bilangan bulat negatif dibagi dengan bilangan bulat positif maka menghasilkan bilangan bulat negatif.
Contoh : -6 : 3 = -2     sebab -2 x 3 = -6
d.      Pembagian Bilangan Bulat Negatif dengan Bilangan Bulat Negatif
Jika bilangan bulat negatif dibagi dengan bilangan bulat negatif maka menghasilkan bilangan bulat postif.
Contoh : -8 : -2 = 4     sebab 4 x -2 = -8
e.       Pembagian dengan Nol
       Untuk sembarang bilangan cacah a, selalu berlaku :

Rounded Rectangle:  a : 0 = ~ (tidak terdefinisi)
 0 : a = 0 dengan a ≠0




                  f.       Pembagian Bilangan 1 atau Elemen Identitas
Dalam pembagian bilangan bulat berlaku sifat identitas tetapi tidak  identitas komutatif.
a : 1 = a 1 : a = 
Contoh : 5 : 1 = 5  1 : 5 =  atau 0,2
Rounded Rectangle: Catatan : Pada operasi pembagian tidak berlaku:
 Sifat Tertutup
2 : 6 = 1/3
10 : 3 = 31/3
 Sifat Komutatif
6 : 2 ≠ 2 : 6
 Sifat Asosiatif
(20 : 5) : 2 ≠ 20 : (5 : 2)
                     Latihan Soal !
1)      50 : 5 = ...
2)      125 : (-5) = ...
3)      -64 : 8 = ...
4)      (-30) : (-10) = ...
5)      354 : 0 = ...
6)      678 : 1 = ...
7)      (-45) : (-8) = ...
8)      (-642) : 6 = ...
9)      810 : 9 = ...
10)   70 : (-5) = ...
C.    Operasi Hitung Campuran Bilangan Bulat
1.      Operasi Hitung
Urutan langkah pengerjaan:
a.       Operasi hitung dalam kurung harus dikerjakan terlebih dahulu
b.      Perkalian dan pembagian dikerjakan urut dari depan
c.       Penjumlahan dan pengurangan dikerjakan urut dari depan
d.      Perkalian dan pembagian didahulukan daripada penjumlahan dan pengurangan.
Contoh :
1.480 : (1.015 – 995) + 567 = (1.480 : 20) + 567
                                                        = 74 + 567
                                                        = 641
2.      Operasi Hitung Dalam Soal Cerita
Urutan langkah pengerjaan:
a.       Perhatikan soal secara seksama kemudian ubah soal cerita yang ada ke dalam bentuk soal angka
b.      Kerjakan soal sesuai dengan urutan langkah pengerjaan operasi hitung.
                     Contoh :
                     Seluruh peserta diklat akan disediakan 60 kamar hotel. Setiap kamar dihuni oleh 2 orang. Dalam pembagian tugas, panitia akan membagi menjadi 12 kelompok. Setiap kelompok terdiri dari ... orang.
                     Jawab :
                     60 x 2 : 12 = 120 : 12 = 10 kamar.

Latihan Soal !
1)      500 + 75 x 12 = ...
2)      152 + 848 : 8 – 9 x 17 = ...
3)      128 : (-16) + 80 x 2 = ...
4)      825 + (-136) – (26 x 4) = ...
5)      6 x (-51) + (-12 x (-14)) = ....
6)      Dita mempunyai pensil sebanyak 12 kotak. Setiap kotak berisi 5 buah pensil. Semua pensil yang dita punya tersebut dibagikan untuk acara amal kepada 30 yatim piatu. Maka setiap yatim piatu mendapat... pensil.
7)      Ririn mempunyai manik-manik yang disimpan dalam 24 kaleng. Setiap kaleng berisi 132 butir manik-manik. Karena kalengnya rusak, Ririn ingin memindahkan semua manik-maniknya ke dalam 8 kaleng yang baru. Banyak butir manik-manik yang ada di setiap kaleng yang baru adalah ... buah
8)      Sebuah pesawat terbang berada pada ketinggian 3.000 meter diatas permukaan laut. Seekor ikan paus berada di kedalaman 200 meter di bawah permukaan laut. Jika pesawat itu turun sejauh 100 meter ke arah permukaan laut, maka jarak pesawat dengan ikan paus adalah ... meter
9)      Paman membeli 8 bungkus permen. Setiap bungkus berisi 48 butir permen. Permen tersebut dibagikan kepada 24 anak. jika setiap anak mendapat permen sama banyak, setiap anak mendapat ... butir permen.
10)  Pak Tono membawa 4 keranjang jeruk yang masing-masing berisi 50 buah. Akan dibagikan kepada 3 orang tetangga dengan jumlah masing-masing 35 buah, 60 buah, dan 70 buah. Sisa jeruk Pak Tono adalah ... buah.

3.      Penaksiran dan Pembulatan
a.       Penaksiran Hasil Operasi Hitung
Menaksir merupakan kegiatan memperkirakan hasil yang mendekati hasil sebenarnya. Untuk menaksir hasil operasi hitung, perhatikan hal-hal sebagai berikut:
1)      Kedudukan angka di sebelah kanan angka yang akan ditaksir.
2)      Bila di sebelah kanan angka yang ditaksir adalah 5 atau lebih besar dari 5, maka bulatkan angka tersebut ke atas
3)      Bila di sebelah kanan angka yang ditaksir lebih kecil dari 5, maka bulatkan angkat tersebut ke bawah.
Contoh :
Taksirlah hasil penjumlahan dari 21+47 dalam puluhan terdekat.
Jawab:
Ditaksir dalam puluhan terdekat, angka yang diperhatikan adalah angka yang menempati satuan.
21 dibulatkan menjadi 20
47 dibulatkan menjadi 50
Jadi, taksiran 21+47 kira-kira 20 + 50 = 70
b.      Pembulatan Hasil Operasi Hitung
Pembulatan dapat dilakukan ke satuan, puluhan,ratusan, atau ribuan terdekat. Pembulatan hasil operasi hitung dilakukan setelah diketahui hasilnya.
Contoh:
Bulatkan hasil operasi hitung  157 + 247 dalam puluhan terdekat!
Jawab:
157 + 247 = 404
404 dibulatkan dalam puluhan terdekat menjadi 400.

Latihan Soal !
Bulatkan hasil operasi hitung di bawah ini ke puluhan terdekat!
1)  135 + 78 = ...
2)  921 + 22 = ...
3)  578 – 65 = ...
4)  553 – 71 = ...
5)  98 + 110 = ...
6)  573 + 140 = ...
7)  41 + 997 = ...
8)  282 – 201 = ...
9)  1.078 – 579 = ...
10)  1997 + 2017 = ...